1,139 research outputs found

    Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator

    Get PDF
    The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. [superscript 1]H NMR and [superscript 13]C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.Malaysia. Ministry of Science, Technology and Innovation (MOSTI Techno Fund)Universiti Sains Malaysia (USM Fellowship

    Elucidation of Beta-Oxidation Pathways in Ralstonia Eutropha H16 by Examination of Global Gene Expression

    Get PDF
    Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that serves as a model for plant oils. Among the genes of note, two potential fatty acid β-oxidation operons and two putative lipase genes were shown to be upregulated in trioleate cultures. The genes of the glyoxylate bypass also exhibit increased expression during growth on trioleate. We observed that single β-oxidation operon deletion mutants of R. eutropha could grow using palm oil or crude palm kernel oil as the sole carbon source, regardless of which operon was present in the genome, but a double mutant was unable to grow under these conditions. A lipase deletion mutant did not exhibit a growth defect in emulsified oil cultures but did exhibit a phenotype in cultures containing nonemulsified oil. Mutants of the glyoxylate shunt gene for isocitrate lyase were able to grow in the presence of oils, while a malate synthase (aceB) deletion mutant grew more slowly than wild type. Gene expression under polyhydroxyalkanoate storage conditions was also examined. Many findings of this analysis confirm results from previous studies by our group and others. This work represents the first examination of global gene expression involving triacylglycerol and fatty acid catabolism genes in R. eutropha.Malaysia-MIT Biotechnology Partnership Programm

    Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells

    Get PDF
    Conventional solvent-based methods are still the most practical approaches for recovery of polyhydroxyalkanoate (PHA) polymer from cellular biomass, even though potential alternatives exist, including chemical, mechanical, and enzymatic methods. It is still necessary, however, to avoid dangerous and environmentally unfriendly solvents (e.g., chloroform and dichloromethane) in the polymer recovery process. In the work presented here, we applied various solvent systems to recover PHA from Ralstonia eutropha and recombinant Escherichia coli cells. It was demonstrated that methyl ethyl ketone (MEK) is a promising solvent for PHA recovery from bacterial cells, particularly for the copolymer poly(hydroxybutyrate-cohydroxyvalerate) [P(HB-co-HV)], exhibiting > 90% polymer recovery. Even though MEK did not solubilize PHAs to the same extent as chloroform, it can recover a comparable amount of polymer because of its processing advantages, such as the low viscosity of the MEK/PHA solution, and the lower density of MEK as compared to cellular components. MEK was found to be the best alternative, non-halogenated solvent among examined candidates for recovery of P(HB-co-HV) from cells. The MEK treatment of PHAcontaining cells further allowed us to eliminate several costly and lengthy steps in the extraction process, such as cell lysis, centrifugation, and filtration.Korea (South). Ministry of Education (Basic Science Research Program through the National Research Foundation of Korea (NRF- 2013R1A1A2A10004690))Korea Polar Research Institute (PE14030

    Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha

    Get PDF
    Polyhydroxyalkanoates (PHAs), a promising family of bio-based polymers, are considered to be alternatives to traditional petroleum-based plastics. Copolymers like poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) have been shown to exhibit favorable physical and mechanical properties, due to decreased crystallinity resulting from the presence of medium-chain-length 3-hydroxyhexanoate (3HHx) monomers. In this study, we produced P(HB-co-HHx) using engineered Ralstonia eutropha strains containing deletions of the acetoacetyl-CoA reductase (phaB) genes and replacing the native PHA synthase with phaC2 from Rhodococcus aetherivorans I24 and by using butyrate, a short-chain organic acid, as the carbon source. Although the wild-type R. eutropha did not produce P(HB-co-HHx) when grown on mixed acids or on butyrate as the sole carbon source, we are able to produce polymer containing up to 40 wt% 3HHx monomer with the aforementioned engineered R. eutropha strains using various concentrations of just butyrate as the sole carbon source. This is the first report for the production of P(HB-co-HHx) copolymer in R. eutropha using butyrate.Korea Polar Research Institute. Polar Academic Program (PAP, PD13010)Korea (South). Rural Development Administration (Project No. 010205022014

    Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha.

    Get PDF
    We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced

    Improved Detergent-Based Recovery of Polyhydroxyalkanoates (Phas).

    Get PDF
    Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process.Malaysian Office of Science, Technology and Innovatio
    corecore